チュートリアル: 空間上のネットワーク設計法 自己組織化の四本柱を中心に-

林 幸雄 (yhayashi@jaist.ac.jp)

北陸先端科学技術大学院大学

テキスト: 自己組織化する複雑ネットワーク

-空間上の次世代ネットワークデザイン,近代科学社,2014.

第11回ネットワーク生態学シンポジウム合宿@湘南国際村センター

1. Spatial Distribution of Nodes

インターネット,電力網,鉄道網,航空路線網などの多くのネットワークは空間に埋め込まれて,ノード配置に疎密な部分が混 在する

⇒ 正方格子や一様ランダムな空間分布ではなく,むしろ人口 密度に応じた空間配置となる

S.H.Yook, H.Jeong, and A.-L.Barabási, PNAS 99(21), 13382, 2002

Examples

電力網

宅配便の輸送網

Examples(continue)

航空路線網

2. Many Real Networks

全く異なる対象や構成要素であるにもかかわらず,現実の多く のネットワークには共通性が存在

社会的関係	知人関係,企業間取引,映画の共演,論文引用,
	性的関係,言語
インフラ技術	インターネット (ルータおよび AS レベル) , WWW,
	航空路線網, 電力網, 電子メール送受信
生物系	神経回路網,遺伝子やエネルギー代謝の反応系,
	食物連鎖

しかも,日々の生活や経済活動,物流や通信手段,我々自身の 体内メカニズムに至るまで,どれも複雑なネットワークの上で 成り立っている.

Small-World Network Model

現実は規則的でも一様ランダムでもない中間的特性!

Small World

Random

D.J.Watts and S.H.Strogatz, Nature, 393, 1998

Scale-Free Network: $P(k) \sim k^{-\gamma}$

In A.-L.Barabási, LINKED, Perseus Pub., 2002 ⇒ ランダムグラフ理論では説明不可

Extreme Attack Vulnerability

SF 構造の性質

- 頑健性: ランダムなノード故障には極めて強く連結性を保持
- 脆弱性: ハブの集中攻撃で極度に分断

さらに,連鎖被害,相互依存性が加わった三重苦!

Cascading Failure

許容量を越えた被害伝搬

- 電力崩壊:初期断線からの広域停電
- 道路やパケットの渋滞

2003 年 8 月 14 日北米北東部停電事故に関する調査報告書, 2004 年 3 月北米北東部停電調査団 (NERC "August 14 2003 Blackout"), 及び, 北米東部大停電について, IEEJ 2003 年 8 月

Blackout in US 2003

五大湖周辺の北米東部大停電の推移.上段の右から左に時刻 16:06, 16:08:57, 16:10:37, 16:10:38, 下段の右から左に時刻 16:10:39, 16:10:44, 16:10:45, 16:13 における黒の停電領域の広がりを表す

Avalanche Dynamics

Problem of Interdependency

ネットワーク科学の拡がり,国家的戦略重点化経済,軍事,社会や環境の持続性,技術インフラ

- Science 325,2009
 Special Issue: Complex
 Systems and Networks
 - NetONets2011 in NetSci2011
 System Risk and Infrastructual Interdependencies

⇒ 複雑に絡み合った大規模システム全体を中央集権的に統制 するのは不可能

3. Self-Organization

自己組織化システムとは、その各サブシステムは他との厳格 な調整を必要とせずに自ら動作するにもかかわらず、全ての サブシステムが(相互作用で創発される)ある共通の目的に 向かって協働するような完全分散システムをさす.

システムのミクロな要素レベルの相互作用だけで,要素における比較的単純な処理からは容易に想定できないような,全体レベルのマクロな現象(パターン)や機能が出現する

⇒ 中央制御の不在, 構造の創発, 結果的な複雑性, (サブ システムの追加で性能が低下しない) 高い拡張性

F.Dressler, Self-Organization in Sensor and Actor Networks, John Wiley & Sons. 2007

Micro-Macro Interaction

現象名	ミクロ	マクロ		
BZ 反応	反応拡散	渦巻き模様		
バクテリアや粘菌	表面成長	樹状突起パターン		
雷	大気中の電荷蓄積	稲妻の形状		
雲	水蒸気と気圧	モコモコ形状		
WWW	頁の更新・追加・削除	ネットワーク構造		
都市伝説や流行	知人との会話や口コミ	拡がっては消えるパターン		

システムのミクロな要素レベルの相互作用だけで,要素にお ける比較的単純な処理からは容易に想定できないような,全 体レベルのマクロな現象(パターン)や機能が出現する

4. Design of Spatial Networks

現状における空間上のネットワーク自己組織化の四本柱

- 2章: I. 優先的選択
- 3章: Ⅱ.リンクの淘汰
- 4章: II. 再帰的分割
- 5章: N.部分コピー

分散システム,分権型組織,複雑性の単純性,メガシティ災害 化などの特徴にも注意!

誰かがネットワーク全体を統括することはなく、あらかじめ 設計図も存在しないのに、比較的単純な規則や原理に各要素 (ノードやリンクの各部分)が従うだけで複雑なネットワーク が形成される

I. Selfish Pref. Atach. $\Pi_i \propto k_i^{\nu}$

Krapivsky-Redner's GN model

BA model

利己性の度合いにしたがった GN 木における次数分布の変化

利己性	無	弱 ←	優先的選択	→ 強
	$\nu = 0$	$0 < \nu < 1$	$\nu = 1$	$\nu > 1$
分布	指数	カットオフ付べき乗	べき乗	独占状態
		sublinear	linear	superlinear
ハブ	ハブ無	最大次数が抑制	ハブ創出	巨大ハブ

Typical Spatial Net Constructions

Y.Hayashi, IPSJ Journal 47(3), 2006

Random Apollonian Net

$$n(k+1, N+1) = \frac{k}{N_{\triangle}}n(k, N) + \left(1 - \frac{k+1}{N_{\triangle}}\right)n(k+1, N)$$

 $P(k) \approx n(k, N)/N$ を代入して整理した,

$$k(P(k+1) - P(k)) + \frac{N + N_{\Delta}}{N}P(k) = 0$$

から, k について連続近似した微分方程式

$$k\frac{dP}{dk} = -\gamma_{RA}P$$

を変数分離法で解くと、 $P(k) \sim k^{-\gamma_{RA}}$. 但し、 $\gamma_{RA} = (N_{\Delta} + N)/N \approx 3, N_{\Delta} = N_{\Delta 0} + 2N.$

T.Zhou, G.Yan, and B.-H.Wang, PRE 71, 046141, 2005

Pref. Atach. on a Space

修正 BA モデルにおけるノード jの選択確率

$\Pi_j \propto d_{ij}^{-\alpha} pop_j^\beta k_j^\gamma$

(a) Geo. BA-like Net

(b) Random Pseudofractal SF Net

Α

Optimal Design

Voronoi セル内の人口にしたがって p-メディアン 最適化でノードの空間配置を定め,評価関数 $Z \stackrel{\text{def}}{=} \sum_{i < j} w_{ij} \tilde{L}_{ij}$ と総リンク長 $L \stackrel{\text{def}}{=} \sum_{i < j} A_{ij} L_{ij}$ との和 $L + \gamma Z$ を最小化するノード*i*-j間のリンクの組合せを求める. w_{ij} はノード*i*と *j*の Voronoi セル内の人口の積とし,最短距離の経路長 L_{ij} をパケット経由コスト $0 \le \delta \le 1$ で重み付けた $\tilde{L}_{ij} = (1 - \delta)L_{ij} + \delta$ を考える.

II Link Survivals

 ・食糧源に伸びる成長と淘汰 による粘菌網

$$\frac{dw_{ij}}{dt} = f(Q_{ij}) - w_{ij}$$

$$Q_{ij} = \frac{w_{ij}(p_i - p_j)}{l_{ij}}$$

- ・ 葉脈や形態形成の化学走性
 への拡散成長
- 人の足跡,獣道

```
経路の選択的強化と冗長リンク
の淘汰
```


A.Tero et al., Science 327, 439, 2010

Coupling Models

ネットワーク構築と情報フローの相互作用

(左) ランダムグラフからハブ創発による相転移 S.-W. Kim, and J.D. Noh, PRE 80, 026119, 2009 (右) 1D 上の準完全グラフ, 2D 上の SF ネットワーク N.Ikeda, Physica A 379, 701, 2007

Initial Configuration: UDG

Unit disk graph

一定の伝達範囲内の無線通信: Unit Disk Graph もし $d_{ij} < A/\sqrt{N_0}$ ならば, ノード $i \ge j$ は結合 \Rightarrow 伝達可能半径 A に従った連結度の相転移 Y.Hayashi, and Y.Meguro, Physica A 391, 872-879, 2011

Network Genetration Methods

毎時刻ごと全体で $R = 0.1N_T$ パケットを発生, 始終点の発生 頻度は各ノードに割当てられた空間的に非一様な人口に比例 Link Survival もし GreedyRouting でリンク e_{ij} をパケットが 通過したら重み増加: $w_{ij} \rightarrow w_{ij} + 1$ また各リンクが確率 $p_d = 0.1$ で重み減少: $w_{ij} \rightarrow w_{ij} - 1$ この重み更新を $T = 3 \times 10^4$ 回まで繰り返す

Modification: Adding Shortcuts

頑健性の改善の為に

Path Reinforcement T ステップのリンク淘汰後,パケット転送 とリンク重み更新を続けながら,生き残った LS ネットに 10 から 30% のショートカットを付加する ランダムに選んだパケットの宿主ノードと,それが訪れた 経路上でランダムに選んだノードとの間に,ショートカッ トを付加して,経路を強化

Random Shortcut パケットの存在位置とは無関係に一様ラン ダムにノードを選んで, 生き残った LS ネットに 10 から 30% のショートカットを付加する

注) LS では $w_{ij} = 0$ になった時, 冗長なリンク e_{ij} は除去され, それによって孤立したノードも除去される

From Organizational Theory

少量のショート カット 付加による 頑健性の向上

組織論:「近所付き合いと遠距離交際」のバランス!

1997年のアイシン大火災におけるトヨタの驚異的早期復帰,世界的に拡大してる温州人の経済ネット

西口, 一橋ビジネスレビュー連載 2006-07

Quantitative Analysises

Shortcut Effect:

Internet AS, Delaunay Tri., Apollonian SF :

Y.Hayashi, and J.Matsukubo, Improvement of the robustness on geographical networks by adding shortcuts, Physica A, 380, 2007.
Y.Hayashi, Necessary Backbone of Super-highways for Transport on Geographical Complex Networks, Advances in Complex Systems 12(1), 2009.

Multi-Scale Quatered Net :

Y.Hayashi, Evolutionary Construction of Geographical Networks with Nearly Optimal Robustness and Efficient Routing Properties, Physica A 388, 2009.

Simulation Results

UDG

LS

PR10%

Good Structure without Hubs

⇒ 小さい次数 $\langle k \rangle = 5 \sim 7 \ge 短いリンク \langle l_{ij} \rangle = 0.01 \sim 0.1 \ \mathcal{O}$ 効率的に構成($N_0 = 10^4$)

High Reachability of Packets

Self-avoiding 付きの GreedyRouting, N_T :生き残り

UDG	100	200	500	1000	2000	5000	10000
N_T	61.94	127.0	331.26	688.94	1425.4	3679.98	7489.92

Average Path-Length: SW Property

 $\Rightarrow LS O O(\sqrt{N_T})$ から PRと RS O O(log N_T) に改善!

Robustness against Failures

ショートカット付加による改善

⇒ ノード除去率の臨界値 f_c が, LS の 0.6 から PR と RS の 0.8 に向上

Robustness against Attacks

ショートカット付加による改善

⇒ ノード除去率の臨界値 f_c が, LS の 0.4 から PR と RS の 0.6 に向上

III. Recursive Divisions

Multi-Scale Quartered Net

毎時刻ある確率で面を1つ選び,自己相似な面の再帰的四分割で自己組織化:疎密なノード配置が創発

 $k_1 = 2, k_2 = 4$ (Tri) or 3(Squ), $k_3 = 6$ (Tri) or 4(Squ). 80km 四方を 160×160 に分割し各メッシュに人口

Good Properties of MSQ Nets

- 3 種類の低次数ノードのみで構成されハブが無い 故障や攻撃に強い結合耐性
- 任意のノード間が高々直線の倍の短い経路長 (*t*-spanner, *t* = 2) で抑えられる
- 局所情報のみによる面ルーティングが適用可
 平面グラフは電波干渉等の問題も避けられる

Y.Hayashi, Physica A 388, 991, 2009, PRE 82, 016108, 2010.

但し,ノード 位置が辺の二等分点上に限られる.

⇒ 任意のノード 位置が可能な長方形分割に拡張: 一般化 MSQ ネットワーク

Bounded Path and Face Routing

Generalized MSQ Nets

初期正方形から,その内部のL×Lの縦横格子軸である確率で 選択した(長方形の)面を分割

(a) Initial square

Y.Hayashi, T.Komaki, Y.Ide, T.Machida, and N.Konno, Physica A 392, 2013

Random Walks with Splitting

 \mathcal{Y}

 \mathbf{O}

Division of Rectangle

Directional random Walk

 \mathcal{T}

x'-x

注) 同時に $(x'-x) \times y$, $x \times (y'-y)$, $(x'-x) \times (y'-y)$ の3つ の長方形も出来るので、粒子が4分裂する

 \mathcal{X}

Combinatorial Analysis for U.R.Div.

 $x \times y$ の長方形の数,すなわち座標位置(x, y)の粒子の数 n_{xy} の1ステップ分の平均的振舞いとしての時間的変化は

$$\Delta n_{xy} = -p_{xy} + \sum_{x',y'} \frac{4p_{x'y'}}{(x'-1)(y'-1)}$$

 $\Delta n_{xy} = 0$ とおくと,

$$p_{L-1L-1} = \frac{4p_{LL}}{(L-1)^2}, \quad p_{L-2L-2} = \left(1 + \frac{4}{(L-2)^2}\right) \frac{4p_{LL}}{(L-1)^2},$$

$$p_{xL-1} = p_{L-1y} = \frac{4p_{LL}}{(L-1)^2}, \quad x > 1, y > 1$$

$$p_{xy} = \left\{ 1 + \sum_{\mathcal{P}} \left(\prod_{i=1}^{l} \frac{4}{(x_i - 1)(y_i - 1)} \right) \right\} \frac{4p_{LL}}{(L - 1)^2}$$

Exact Solution for U.R.Div.

Branching Diagram of $(n_1, n_2, \ldots,)$

*l*回分割された面数*nl*を要素とする状態ベクトルの遷移

Approximative Analysis for U.R.Div.

時刻 tまでに l 回分割された l 層の面の分布

$$p_l(t+1) - p_l(t) = -\frac{m}{(m-1)t} \{ p_l(t) - p_{l-1}(t) \}$$

Gamma Dist. $g_{2l}(x)$

元の正方形の面積 L^2 から l 回の分割で面積 $S_l = \prod_{i=1}^l X_i Y_i L^2$ になったとする. 有理数である 縮小率 X_i と Y_i を一様分布で 近似: $x \stackrel{\text{def}}{=} -\log(S_l/L^2) = -\sum_i (\log X_i + \log Y_i)$

Mixure Distribution

時刻 t における分割回数 l の分布を表す p_l と l 層内の面積分布 を表す $g_{2l}(x)$ の混合分布 $\sum_l p_l g_{2l}(x)$ の数値計算をして, x を S_l に変数変換すれば所望の分布が近似的に得られる

Universality

- Generalized-MSQ ネット:自己相似な正方形(辺の中点分割)から長方形(任意点での分割)に一般化
- その面積分布の,組合せ厳密解と近似解を導出
 ⇒ 正方格子上で四分裂する粒子の乱歩と等価
- 非一様に空間分布する餌探索で G-MSQ ネット 上の乱歩 はレビィ飛行より効率的

Science 318(11), 742-743, 2007

Y.Hayashi, Chapter 4, In "Networks -Emerging Topics in Computer Science," A.Rezazadeh, L.Momeni, and I.Bilogrevic(Eds), iConcept Press, 2012

Biological Foraging

生物の餌探索も非一様で飛び飛びに移動

Lévy 飛行:移動距離 *l_{ij}* の分布は べき乗

 $\mu = 2.5$

二次元に一様ランダムに疎に分布した標的の探索では、指数 $\mu \approx 2$ が最適

G.M.Viswanathan et al. Nature 401, 911, 1999, M.C.Santos et al. PRE 72, 046143, 2005.

⇒ 非一様な空間分布の標的の探索では?

Preferential Routing

 $\alpha > 0$ 大だと高次数, $\alpha < 0$ 小だと低次数に移動 Lévy 飛行の最適探索戦略に近いべき指数 $\mu \approx 2$

Basic Property

α-乱歩によるリンクの訪問頻度: 濃淡表示

対角領域が高頻度: $\alpha = +1$ 周辺領域が高頻度: $\alpha = -1$

Y.Hayashi, and T.Komaki, Journal On Advances in Networks and Services 6(1&2), 2013.

Search Problem

 $L \times L$ 格子上の各点の近傍人口に比例して発生した標的に対して、ノード間をスキャンする際,探索者は幅 r_v の正方形内に標的があれば捕獲する

探索効率 $\eta\lambda$: 標的密度 λ でスケーリング

 L_m は N_t 個の標的から N_s 個を捕獲するまでに移動した距離で,格子単位で計る.Mは探索試行回数

Inhomogeneous Adaptive Search

G-MSQ上の*α* = 0-乱歩:標 均が多い対角領域に適応的 境界無格子上の Lévy 飛 行:全体を放浪

 $N_t = 200$ 個中で $N_s = 50$ 個の標的を獲得するまで

Scaled efficiency by density

Peak of Efficency $\lambda\eta$ for N_t

G-MSQの探索効率 $\eta\lambda$ が Lévy 飛行のより 高い (突き出た部分) N = 500 とそれに対応する $\mu = 1.8$ の断面

N. Partial Copying

Duplication-Divergence モデル: タンパク質相互作用ネットの 基本モデルと考えられていたが...

R.V.Sole et al., Advances in Complex Systems 54, 2002

Analysis of P(k)

次数kのノード数 n_k の平均的な時間変化

$$\frac{dn_k}{dt} = \frac{n_k}{N} + \frac{\delta}{N} \left\{ (k+1)n_{k+1} - kn_k \right\} + \frac{1-\delta}{N} \left\{ (k-1)n_{k-1} - kn_k \right\} + \frac{2\beta}{N} \left\{ n_{k-1} - n_k \right\}$$

母関数を用いた近似解析で上記の解を用いた $p_k = n_k/N$ より

$$p_k = \frac{\left(\frac{2\delta-1}{\delta}\right)^{\frac{2\beta}{1-\delta}}}{\Gamma(\frac{2\beta}{1-\delta})} \frac{\Gamma(\frac{2\beta}{1-\delta}+k)}{k!} \left(\frac{1-\delta}{\delta}\right)^k,$$

 $\gamma = -k_0 = 1 - 2\beta/(1 - \delta)$ とおいて整理すると, $\delta > 1/2$ で

$$p_k \approx (k+k_0)^{-\gamma} e^{-k/k_c}$$

R.Pastor-Satorras et al., Journal of Theoretical Biology 22, 2003

Another Analysis

x = 1ステップで突然変異のランダムな結合がb本追加される 確率は Gamma 分布に従い,結合核 $A_k = (1 - \delta)k + \beta$ として

$$\frac{dn_k}{dt} = \frac{A_{k-1}n_{k-1} - A_kn_k}{t} + G_k,$$

$$G_k = \sum_{a+b=k} \sum_{s=a}^{\infty} {}_s C_a p_s (1-\delta)^a \delta^{s-a} \frac{\beta^b}{b!} e^{-\beta},$$

$$p_k \approx \frac{k - 1 + \frac{\beta}{1 - \delta}}{k + \frac{\beta + 1}{1 - \delta} - (1 - \delta)^{\gamma - 2}} p_{k-1} = \frac{\Gamma(k - 2 + \frac{\beta}{1 - \delta})}{\Gamma(k - 1 + \frac{\beta + 1}{1 - \delta} - (1 - \delta)^{\gamma - 2})} p_1,$$

$$\downarrow \mathcal{V}, p_k \sim k^{-\gamma}, \gamma = 1 + 1/(1 - \delta) - (1 - \delta)^{\gamma - 2}$$

J.Kim, P.L.Krapivsky, B.Kahng, and S.Redner, PRE 66, 055101(R), 2002

Singularity: Non-Self-Averaging

特異性: 非自己平均性の問題 $\chi \stackrel{\text{def}}{=} \sqrt{\langle L^2 \rangle - \langle L \rangle^2} / \langle L \rangle$ $\delta = 0$ かつ $\beta = 0$ でリンク 除去も 突然変異もない 複写のみの Pure Duplication モデルでは、常に二部グラフ $K_{j,N-j}$ が生成

I.Ispolatov, P.L.Krapivsky, and A.Yuryev, PRL 71, 061911,2005

State Transition in Urn Model

次数 k のノード が $p_1 = n_k/N$ で選ばれ, 除去率 δ で $0 \le k' \le k$ 本コピーされた時の遷移の計算に隣接行列は不要 $(n_1, \ldots, n_{k'}, \ldots, n_k, \ldots) \rightarrow$ $(n_1 + k', \ldots, n_{k'+1} + 1, \ldots, n_k - 1, n_{k+1} + 1, \ldots)$

その遷移確率は $p_1 \times p_2$, ここで $p_2 = {}_k C_{k'} \delta^{k-k'} (1-\delta)^{k'}$

Markov Chain in Copying Net

5. Hot Topic: Onion-like Structure

次数順攻撃に最適な耐性を持 つ玉ねぎ状構造 C.M.Shneider et al., PNAS 810, 2011, T.Tanizawa, S.Havlin, and H.E.Stanley, PRE 85, 046109, 2012

同程度の次数ノードを結合す るよう全体的リワイヤ Z.-X.Wu, and P.Holme, PRE 84, 026116, 2011

増殖構築法を提案!

Strong Robustness and Efficiency

Y.Hayashi, To appear in IEEE Xplore SASO (Self-Adaptive and Self-Organizing Systems) 2014

6. For Future Network Design

効率的かつ耐性が強いネットワークをどう自己組織化?

有線と無線の混在, ITS など移動体, 大規模複雑化, 自己修復,

非一様性 人口や経済活動に 依存した現実的なノード (基地局)配置や通信要求

自律分散 部分的な成長,局所 情報のみで処理

広域無線 指向性やビーム強 度の制御, 電波干渉回避 (平面性), 長距離リンクの 抑制

Appendix 1. Coauthors Net

Appendix 2. Optimal Topology

min
$$E(\lambda) = \lambda d + (1 - \lambda)\rho$$
,
距離 $d \stackrel{\text{def}}{=} \frac{\sum_{i < j} D_{ij}}{nC_2} / D_{max}$,
リンク数 $\rho \stackrel{\text{def}}{=} \frac{\sum_{i < j} a_{ij}}{nC_2}$,
パラメータ λ に対する次数 k の
頂点頻度 p_k のエントロピーで
評価
 $H \stackrel{\text{def}}{=} - \sum_{k=1}^{n-1} p_k \log p_k$

R.F. i Cancho and R.V. Solé, SantaFe Inst. Working Paper 01-11-068, 2001

Appendix 3. Self-Averaging

Copying ネットにおけるリンク長の偏差 χ に対する自己平均 性:時間的な収束性

実線,短破線,点線,長破線の順に,優先的なノード選択の 強弱に対応する $\nu = 0, 0.5, 1.0, 2.0$ の場合, Δ, \times, \bigcirc の印はリン ク除去率 $\delta = 0.1, 0.5, 0.9$ の場合

Appendix 4. Clasification

 $\delta = 1$ の横線上が従来モデルの GENと GN 木で、 $\delta = 0$ の横線 上はリンク除去無の Copying ネット. $0 < \delta < 1$ では次数分布 形の揺らぎを伴ってこれらを補間

Appendix 5. Random Drift Model

N 個の各個体がt = 1, 2, ...,の世代交代の時に1 つ前の世代 から一様ランダムに選択した種をコピーして引き次ぐ一方, 影付き箱で示された一定割合 ν の個体に突然変異を仮定

