地理的空間上のネットワーク 自己組織化

林幸雄

北陸先端科学技術大学院大学 yhayashi@jaist.ac.jp

第4回複雑システムのネットワーク科学研究会, Nov. 29, 2010

目次

- -複雑ネットワーク研究のサーベイと最新動向-地理的空間上のモデルは国際的研究の前線上
- 1. 現実に潜む SF ネットワーク
- 2. 空間上のネットワーク特性 →地理的制約による結合耐性の脆弱化
- 3. ショートカット効果による改善 -遠距離交際と近所づきあいのバランス-
- 4. 幾何学的細分による自己組織化ネット
- 5. マルコフ連鎖とフラクタル解析

0. 近未来アドホックネット構築 効率的かつ耐性が強いネットワークをどう設計? 有線と無線の混在, ITS など移動体, 大規模複雑化

> 動に依存した現実的 なノード(基地局)配 置や通信要求 自律分散 部分的な成長、

非一様性 人口や経済活

広域無線 指向性やビー ム強度の制御,電波 干渉回避(平面性), 長距離リンクの抑制

局所情報のみで処理

NICT NetSci-Seminar – p.3/45

A.L. Barabási et al., Physica A, 272, 1999

パーコレーション解析 GCが出来るには、あるノードiがjに結合する条件 付きで. iの平均次数が最低2であることより. $\langle k_i | i \leftrightarrow j \rangle = \sum k_i P(k_i | i \leftrightarrow j) = 2.$ $P(k_i | i \leftrightarrow j) = P(i \leftrightarrow j | k_i) P(k_i) / P(i \leftrightarrow j)$ を用い, $P(i \leftrightarrow j | k_i) = k_i / (N-1), P(i \leftrightarrow j) = \langle k \rangle / (N-1)$ より. $\sum_{k_i} k_i P(k_i | i \leftrightarrow j) = \sum_{k} k_i \frac{N-1}{\langle k \rangle} \frac{k_i}{N-1} P(k_i).$ ゆえに、 $\langle k^2 \rangle / \langle k \rangle = 2$. 母関数法でも同様. R.Cohen et al., Chapter 4, In S. Bornholdt, and H.G. Svchster Eds. Handbook of Graphs and Networks, 2003, WILEY-VCH. NICT NetSci-Seminar - p.5/45

 $\bar{P}(\bar{k}) = \sum_{k=\bar{k}}^{\infty} P(k)_k C_{\bar{k}} q^{\bar{k}} (1-q)^{k-\bar{k}}.$

GC が出来る条件式
$$rac{\langle ar{k}^2
angle}{\langle ar{k}
angle} = 2$$
より, 臨界値: $q_c = rac{1}{\langle k^2
angle / \langle k
angle - 1}.$

現実のSFネットでは、べき指数は $2 < \gamma < 3$ なの で、 $\langle k^2 \rangle = \sum k^2 P(k) \sim \sum k^{2-\gamma} \rightarrow \infty, q_c \rightarrow 0$: 強結 合耐性(不可避なウィルス拡散)

R.Cohen et al., PRL 85, 4626-4628, 2000.

別解法:感染率がほぼ0でも蔓延 SFネット上のSISモデルにおける次数kを持つ ノードの感染密度 $\dot{\rho}_k(t) = -\rho_k(t) + \lambda k(1 - \rho_k(t))\Theta(t), \quad s_k(t) + \rho_k(t) = 1.$ 平均場近似 $\Theta \stackrel{\text{def}}{=} \sum_{k} \frac{kP(k)\rho_{k}}{\langle k \rangle}$ に, $\dot{\rho}_{k} = 0$ の平衡解 $\rho_k = \frac{\lambda k \Theta}{1 + \lambda k \Theta}$ を代入して Θ の関数 $f(\Theta)$ として表す. 条件 $\exists \rho_k \neq 0$ は, $\frac{df(\Theta)}{d\Theta}|_{\Theta=0} \geq 1$ と等価. ゆえに、感染流行のしきい値 λ_c は、 $\lambda_c \leq \frac{\langle k \rangle}{\langle k^2 \rangle} \sim \frac{1}{\ln N} \to 0 \ (N \to \infty).$

R. P.-Satorras and A. Vespignani, PRE 63, 066117, 2001

Robust, Yet Vulnerable

SF構造の性質 **頑健性**: ランダムな ノード故障には強 く連結性を保持

脆弱性: ハブの集中 攻撃で極度に分断

⇒ 逆に, 極度な分断性 は, ウィルス拡散の防止 には好都合!

Z. Dezsö and A.L. Barabási,
PRE 65, 055103, 2002, R. P.Satorras and A. Vespignani, PRE
65, 036104, 2002

Optimal Topology

経済性:リンク数
$$\leftarrow 0 < \lambda < 1 \rightarrow$$
 通信効率:距離
Random (tree) - Pref. (SF) - Forced (star, clique)

min $E(\lambda) = \lambda d + (1 - \lambda)\rho,$ 距離 $d \stackrel{\text{def}}{=} \frac{\sum_{i < j} D_{ij}}{{}_{n}C_{2}} / D_{max},$ リンク数 $\rho \stackrel{\text{def}}{=} \frac{\sum_{i < j} a_{ij}}{{}_{n}C_{2}},$ 次数 $k \mathcal{O}$ 頂点頻度 $p_{k} \mathcal{O}$ エントロピーで評価 $H \stackrel{\text{def}}{=} - \sum_{k=1}^{n-1} p_{k} \log p_{k}$

R.F. i Cancho and R.V. Solé, SantaFe Inst. Working Paper 01-11-068, 2001

多くの現実のネットワークは距離尺度を持つ空間 に埋め込まれ、ノードは疎密に分布: Non-Poisson! ルータ(上図)と人口(下図)の密度分布

Yook, Jeong, Barabási, PNAS 99(21), 2002

航空路線のリンク長分布 国内線は指数分布,国際線を含めるとべき乗分布

Y.Hayashi, IPSJ Journal Vol.47, No.3, 2006.

Geographical Constraints

M.T.Gastner and M.E.J.Newman, Euro.Phys. J. B 49(2), 2006.

Geographical Constraints

M.T.Gastner and M.E.J.Newman, Euro.Phys. J. B 49(2), 2006.

Geographical Constraints

M.T.Gastner and M.E.J.Newman,

Euro.Phys. J. B 49(2), 2006.

∀P(k)において, 短いサイクルの存在でより脆弱に!

NICT NetSci-Seminar - p.12/45

理論予測:分母がより小さくなって $q_c^* > q_c$,短いサ イクルの存在でランダム故障に対してより脆弱化 L.Huang et al., Europhys.Lett. 72(1), 2005.

地理的SFネットワークモデル

- Modulated BA: $\Pi_i \sim k_i \times l^{\alpha}$, rand. position of node
- SF on lattices: connect within $r = A \times k_i^{1/d}$
- Space-filling: subdivision of a region (heterogeneous dist. of nodes)

Y.Hayashi, IPSJ Journal Vol.47, No.3, 2006.

Random Apollonian Net $n(k+1, N+1) = \frac{k}{N_{\triangle}}n(k, N) + \left(1 - \frac{k+1}{N_{\triangle}}\right)n(k+1, N)$

 $P(k) \approx n(k, N)/N$ を代入して整理した,

$$k(P(k+1) - P(k)) + \frac{N + N_{\Delta}}{N}P(k) = 0$$

から, k について連続近似した微分方程式

$$k\frac{dP}{dk} = -\gamma_{RA}P$$

を変数分離法で解くと、 $P(k) \sim k^{-\gamma_{RA}}$. 但し、 $\gamma_{RA} = (N_{\Delta} + N)/N \approx 3, N_{\Delta} = N_{\Delta 0} + 2N$. T. Zhou, G. Yan, and B.-H. Wang, PRE 71, 046141, 2005.

Geographical SF Nets

三角分割されたある初期構成から反復的に成長 Random Apollonian: ランダム選択した三角形内 に新ノードを挿入し,そこから各頂点に結合 (三角形の再分割)

Delaunay-like SF: 新ノードを中心としたある範囲 内で対角変形を施す(長距離リンクの抑制)

Delaunay Triangulation: 対角変形操作を全域で

Topological Structure

RA

DT

DLSF

- 4隅と中央におけるハブ的スタブ
- 人口分布のような疎密部分が自然に創出

Y.Hayashi and J.Matsukubo, Physical Review E 73, 066113, 2006.

RA: power law, DT: lognormal, DLSF(RA+NN): power law with exponential cutoff NICT NetSci-Seminar - p.18/45

Damages by Attacks Initial N=200 targeted attacks on 16 hubs (an it museus an organ is an in managed any starts (as i have been a second of an from the second terms RA (At) second second in it we have I second them ? an anongour anonant at manyors, foreign tarme DT

Randomly Rewired Nets

地理的制約を無くしたネットワークとの比較: 総リンク数や次数分布を保持したまま,リンクペア をランダムに張り替えて null model 化

Rewiring a pair of links with the same degree at each node

Maslov et al., Physica A 333, 2004

Tolerance to Failures

最大連結成分 GC のサイズ比 S/N挿入図:平均クラスタサイズ $\langle s \rangle$

Tolerance to Attacks

Y.Hayashi and J.Matsukubo, Physical Review E 73, 066113, 2006. NICT NetSci-Seminar – p.22/45

3.ショートカット効果 遠距離交際(高速道)と近所づきあい(一般道)

⇒ 攻撃で孤立したクラスタを高架橋のように繋ぐ

NICT NetSci-Seminar – p.23/45

攻撃率fに対するGCのサイズ比S/N

Hayashi et. al., Physica A 380, 2007

⇒ショートカット率 ○3% - ▽30% で大幅に改善

NICT NetSci-Seminar – p.24/45

バックボーン特性

元のリンク () とショートカット + の媒介中心性 B_l の分布 $P(B_l)$

RA

DT

DLSF

⇒ショートカットが通信バックボーンとして機能 することを示唆 但し, DLSFでは最大次数が若干抑制されても, 長 距離リングが未だ存在する

Y.Hayashi, Advances in Complex Systems, Vol.12, No.1, 2009

4. Muti-Scale Quartered Net

三角分割と四角分割の例

人口分布に応じた確率で面を選択,赤の過密地区に ノードが集中して負荷分散!

 $k_1 = 2, k_2 = 4$ (Tri) or 3(Squ), $k_3 = 6$ (Tri) or 4(Squ).

MSQネットの優れた特性:

MSQネットの優れた特性:

 3種のみの低次数であることから,故障と攻撃の両方に対して高い結合耐性,総リンク数も O(N)で少なく経済的

MSQネットの優れた特性:

- 3種のみの低次数であることから,故障と攻撃の両方に対して高い結合耐性,総リンク数も O(N)で少なく経済的
- 任意のノード間のパス長が高々t 倍 (the *t*-spanner with the stretch factor t = 2)

MSQネットの優れた特性:

- 3種のみの低次数であることから,故障と攻撃の両方に対して高い結合耐性,総リンク数も O(N)で少なく経済的
- 任意のノード間のパス長が高々t倍 (the *t*-spanner with the stretch factor t = 2)
- GPS 等による位置情報を用いた, 効率的な平面 上の分散ルーティングが適用可

MSQネットの優れた特性:

- 3種のみの低次数であることから,故障と攻撃の両方に対して高い結合耐性,総リンク数も O(N)で少なく経済的
- 任意のノード間のパス長が高々t倍 (the *t*-spanner with the stretch factor t = 2)
- GPS 等による位置情報を用いた, 効率的な平面 上の分散ルーティングが適用可

○局所情報のみで自律分散的に成長できること, つまり,各部分で構築が可能なのもメリット!

Bounded Short Paths

最悪のt = 2の例

フェイスルーティング法:2ノード間の直線と交差 する面の縁を通るのが最短

リンク長とt-値の分布

Opt. Modality

Multimodal net (i = 1, 2, ..., M modalities): $k_i \stackrel{\text{def}}{=} k_1 b^{i-1}, r_i \stackrel{\text{def}}{=} r_1 a^{i-1}, a > 1, 0 < b < 1$ $\forall i$, bimodal net: $k_1, k_2 = \sqrt{\langle k \rangle N}$, が故障と攻撃の両方 に対して最適! $M \to \infty$ における SF が最悪 P(k) 一般に、どんな割 合で混じった頻度 P(k)が最適か? k1 k2 k3

T.Tanizawa, G.Paul, S.Havlin, H.E.Stanley, Phys. Rev. E 74, 2006

Opt. Bimodal Net

ハブ攻撃に対するGCサイズ比(右)と平均クラス タサイズ(左)

BA-like Geo. Net

α大では近接グラフ(距離重視), β大では人口集 中箇所にハブが出来やすい(ホップ数重視)

 $\alpha = 2, \beta = 0$: Y.-B. Xie, et al, PRE 75, 036106, 2007.

NICT NetSci-Seminar - p.34/45

Visualizations

(d) BA-like:033

Topological Prop.

SF的なBA-like:033やApollonian, 近接グラフに近いBA-like:300より, MSQ は小さな次数でリンク長も短い!

Y.Hayashi and Y.Ono, PRE 82, 016108, 2010

ノードとリンクへの最大負荷

	Rand	Pop	Rand	Pop
Net	$\max B_i$	$\max B_i$	$\max \bar{B}_l$	$\max \bar{B}_l$
000	0.254	0.227	0.085	0.081
003	0.766	0.854	0.048	0.087
030	0.362	0.392	0.134	0.180
033	0.657	0.710	0.056	0.099
300	0.282	0.235	0.121	0.121
303	0.444	0.532	0.073	0.107
330	0.397	0.337	0.121	0.143
333	0.634	0.620	0.106	0.072
Apollonian	0.295	0.278	0.056	0.059
MSQ	0.227	0.259	0.137	0.185

NICT NetSci-Seminar – p.37/45

5. Markov chain (u.a.r)

時刻tにおいてサイズの降順で定義した第l層の面数 $n_l(t)$ を要素とする状態ベクトルを考える

 $(n_1(t), n_2(t), \ldots, n_l(t) \ldots)$

次の時刻t+1でl層のある面が選ばれる確率 $p_l(t) = n_l(t)/N(t)$ より,

 $(\ldots, n_l(t), n_{l+1}(t), \ldots) \rightarrow$

 $(\ldots, n_l(t+1) - 1, n_{l+1}(t+1) + 4, \ldots)$

に遷移する, 無限マルコフ過程をなす 総面数: $N(t) = \sum_{k} n_k(t) = N_0 + 3t$

Decision Tree

これは一定確率で子孫を生成する Galton-Watson 型の分岐過程とは異なる

Equivalent Wave Eq. 第l層の面数 $n_l(t) = N(t)p_l(t)$ の変化量は $\Delta n_l \stackrel{\text{def}}{=} N(t+1)p_l(t+1) - N(t)p_l(t),$ $= 4p_{l-1}(t) - p_l(t).$ 十分大きなtでは $N(t) = N_0 + 3t \approx 3t$ より, (*) $p_l(t+1) - p_l(t) = -\frac{4}{3t}(p_l(t) - p_{l-1}(t)),$ を数値的に解けば良い

Y.Hayashi, IEICE Trans. Fundamentals, Vol.E94-A, No.2, 2011

Numerical Fitting

差分方程式の解(点線)はマルコフ過程の平均値 (マーク記号)と非常に良くフィットする!

6. まとめ

- ・現実の多くのネットワークに潜むSF構造の頑健性:不慮の故障に強くハブ攻撃に弱い結合耐性,経済的かつ効率的な特性等をサーベイ
- 現状の地理的 SF モデルを整理し, 地理的制約 による脆弱化の理論予測と実験結果を紹介
- ・ 少量のショートカット追加による劇的改善と、
 そのバックボーン機能を提示
- 自己相似な細分による
 - ネットワーク自己組織化法を提案し,最適に 近い結合耐性,t-spanner性,効率的な分散ルー ティングの優れた特性を提示
- 上記のフラクタル解析など,今後の発展性を 示唆

付録1. Cascading Failure

許容量を越えた被害伝搬

- 電力崩壊:初期断線 からの広域停電
- 道路やパケットの
 渋滞

2003 年 8 月 14 日北米北東部停電事故に関する調査報告書, 2004 年 3 月北米北東部停電調査団 (NERC "August 14 2003 Blackout"),及び, 北米東部大停電について, IEEJ 2003 年 8 月.

付録2. Avalanche Dynamics

