Next: この文書について…
Up: リカレントネットの学習法と応用: オートマトンの抽出
Previous: 全体に対する考察
参考文献
- 1
- Angluin,D.
On the complexity of minimum inference of regular sets.
Information and Control,39,337-350,1978.
- 2
- Barto,A.G.
Connectionist learning for control. In W.Miller, R. Sutton, and
P.Werbos(Eds.), Neural networks for control. Cambridge,MA:MIT
Press,1990.
- 3
- Cleeremans,A. ,Servan-Schreiber,D. ,and
McClelland,J.
Finite state automata and simple recurrent networks. Neural
Comp. 1(3),372,1989.
- 4
- 銅谷賢治:
リカレントネットワークの学習アルゴリズム,計測と制御,
30,296-301,1991.
- 5
- Fu,K.S. and Booth,T.L.
Grammatical inference:Introduction and survey - Part I.
IEEE Transactions on systems, Man and Cybernetics,
5,195-111,1975.
- 6
- Giles,C.L., Miller,C.B., Chen,D.,Chen,H.H.,
Sun,G.Z., Lee,Y.C.
Learning and extracting finite state automata with second-order
recurrent neural networks. Neural Comp.4,393-405, 1992.
- 7
- Giles,C.L., Horne,B.G., Lin,T.
Learning a class of large finite state machines with a recurrent neural
network. Neural Networks. 8(9),1359-1365,1995.
- 8
- Hopcroft,J.E. and Ullman,J.D.
Introduction to automata theory, languages, and
computation. Reading, MA: Addison-Wesley,1979.
- 9
- Kohavi,Z.
Switching and finite automata theory (2nd edn.). New York:
Mcgraw-Hill,1978.
- 10
- Lang,K.
Random DFAs can be approximately learned from sparse uniform examples.
In Proceedings of the Fifth ACM Workshop on Coputational Learning
Theory. ,1992.
- 11
- Miller,C.B., Giles,C.L.
Experimental Comparison of the Effect of Order in Recurrent Neural
Networks.
International Journal of Pattern Recognition and Artificial
Intelligence, (Special Issue on Neural Networks),
7(4),849,1993.
- 12
- Mozer,M.C. and Bachrach,J.
Discovering the structure of a reactive environment by exploration.
Neural Comp. 2(4),447-454, 1990.
- 13
- Narendra,K.S. and Parthasarathy,K.
Identification and control of dynamical systems using neural networks.
IEEE Transactions on Neural Networks, 1,4-27, 1990.
- 14
- Pollack,J.B.
The Identification of dynamical recognizers.
Machine Learning, 7(2/3),227-252, 1991.
- 15
- 坂和正敏,田中雅博:
ニューロコンピューティング入門,森北出版,1997.
- 16
- Sato,M.
A real time learning algorithm for recurrent analog neural networks,
Biol. Cybern.,62,2229-2232,1990.
- 17
- Tomita,M.
Dynamic construction of finite-state automata from examples using
hill-climbing.
Proc. Fourth Annu. Cogn. Sci. Conf., 105, 1982.
- 18
- 渡辺辰巳,郷原一寿,内川嘉樹:
リカレントニューラルネットワークの各学習則に関する検討および学習曲面の形状,
電子情報通信学会論文誌,Vol.J 74-d-,No12,1776-1787,1991.
- 19
- Watrous,R.L., and Kuhn,G.M.,
Induction of finite-state languages using second-order recurrent
networks.
Neural Comp. 4(3),406-414, 1992.
- 20
- Williams,R.J.,and Zipser,D.
A learning algorithm for continually running fully recurrent neural
networks.
Neural Comp. 1(2),270, 1989.
- 21
- Williams,R.J.,and Zipser,D.
Gradient-based learning algorithms for recurrent networks and their
computational complexity.
in Y. Chauvin and D.E. Rumelhart(eds.)
Backpropagation: Theory, Architectures, and Applications, Lawrence Erlbaum Associate, Publishers, New Jersey,434-486, 1995.
Hitoshi Kobayashi
Wed Jul 26 04:25:55 JST 2000