
 
 

Master’s Thesis 

An Implementation of an Indoor Search and Rescue Robot for Disaster Rescue 

MOU Yingzhou 

Supervisor       HAYASHI Yukio 
 

 
Japan Advanced Institute of Science and Technology 

Kanazawa University 
Division of Transdisciplinary Sciences 

 (Transdisciplinary Sciences) 

 

January 2023 



 

 

An Implementation of an Indoor Search and Rescue Robot for Disaster Rescue 
   University Name: JAIST 

   Student Number: s2050004 

   Student’s Name: MOU Yingzhou 

   Supervisors’ Name: HAYASHI Yukio 

1. Introduction 

On average, a fire occurs every 23 seconds in the United States. In 2021, U.S. fire departments received a total of 

approximately 135,3500 fire calls, of which 486,500 fires occurred indoors, accounting for approximately 36% of the 

total calls. However, these fires resulted in a total of approximately 3,800 deaths, of which 2,880 were from indoor fires, 

a rate of 75.7% [1]. Therefore, when a fire occurs, rescuing trapped people in the fastest way will be the key to reducing 

the mortality rate of indoor fires. Considering the dangers of fire rescue, the use of robots instead of humans for rescue 

searching missions is seen as an increasing trend. However, professional rescue robots are very expensive and cannot be 

used as widely as fire extinguishers. Therefore, we proposed a lower-cost rescue search robot using inexpensive parts 

commonly found in household appliances, with the aim of making such robots more widely available. 

2. Research Methods 

In order to achieve the research goal, we first consider the 

hardware structure of the robot. The overall hardware 

structure diagram is shown in Figure 1. For the robot 

body, we used the Nexus 10006 chassis. It has three 

independent driving wheels, which are mounted 120 

degrees apart on the edge of the chassis. Each wheel is 

equipped with an AB phases pulse encoder that outputs 

pulse signals as the wheel rotates. The three motors and 

corresponding encoders are controlled by an Arduino 

328P microcontroller. In addition, we installed three drop 

detection sensors on the sides of the three wheels, which 

are also controlled by the 328P microcontroller. To 

monitor the remaining battery capacity and knowing if the 

charging base is properly connected, we use two voltage 

sensors. These two sensors are also connected to an 

Arduino 328P microcontroller. Due to the weak 

performance of Arduino microcontroller, in our proposal, 

the microcontroller is only responsible for the data 

acquisition of the above sensors and the control of the 

three motors. As for autonomous patrol function, we adopted Nvidia Jetson Nano as the central computer of the robot. 

The Nvidia Jetson Nano is an Arch64 single-board computer with 384 CUDA cores and 4GB RAM. In addition, a single-

wire LiDAR, a 1080P fixed-focus fisheye camera, and a 9-axis inertial gyroscope are connected to the computer via a 

USB interface to provide the necessary information for autonomous navigation and movement of the robot. In order to 

make the robot self-charging, we used the BWS50-28-S1R5 electromagnetic contactless charging module produced by 

Bellnix. The module can provide a maximum charging power 

of 43W for the robot, which meets the needs of this study.  In 

addition, we also installed a battery, voltage conversion 

modules, a wireless communication module and other 

necessary auxiliary equipment for the robot. By ourselves, we 

also made a charging base, and its docking schematic diagram 

is shown in Figure 2. There is an AR tag above the base, 

through which the robot can identify the position of the 

charging base and complete the docking process. 
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[Figure 1: Hardware structure] 

[Figure 2: Docking demo] 



 

On the software part, we installed Ubuntu20.04 OS and associated hardware drivers for the Nvidia Jetson Nano. To 

simplify development, we used the ROS Noetic version of the software library and tools. The software library not only 

allows us to add new features to the robot car in a loosely coupled manner, but also provides some pre-packaged features. 

For example, the navigation module provides SLAM [2] mapping, path and other functions, and the IMU module 

provides the function of motor encoder and IMU sensor data fusion algorithm, etc. Based on the above conditions, we 

designed five functional modules for the robot, namely 1) navigation, 2) image recognition, 3) coordinate transformation, 

4) hardware driver program, and 5) behavior control module to ensure the operation of the robot. It is worth mentioning 

that we used a machine learning model, YOLO version 5 [3], for our object detection [4] functions. This model is 

optimized for the ROS software library and allows for faster recognition with a lower processor load. After coding these 

functions, we performed various tests on these functions. For the chassis part of the robot, we performed motion tests 

and PID [5] parameter adjustments. Moreover, auto-charging and target recognition, we calibrated the camera using 

calibration charts, and to verify how the target recognition algorithm would be affected in the event of an indoor fire. 

The accuracy of the YOLO model is also tested in recognizing different human postures under different smoke 

concentrations by using dry ice to create smoke. 

3. Results and Considerations 

In the PID debugging test for the travel section, we specified 

different PID parameter values for the three motors, so that the 

motor motion was optimized. The results are shown in Figure 3. 

As can be seen, the three motors reached the same speed at the same 

time after starting. In addition, we have tested the robot’s 

navigation and positioning, self-charging, and human body 

recognition functions, and achieved satisfactory results. In the 

smoke test, we found that the YOLO model has the highest success 

rate for human recognition in standing posture, while the 

recognition ability is weaker in squatting or lying posture. 

However, because we used a visible light camera that cannot 

penetrate smoke, the recognition success will be significantly 

reduced when smoke blocks the human body. The specific 

experimental results are shown in Table 1.  

4. Conclusions 

This study has proposed an implementation method of indoor search and rescue robot for disaster rescue. In addition, a 

machine learn model has been introduced to responsible for the target recognition. Unfortunately, the existing target 

recognition model has poor recognition ability especially for lying personnel. Meanwhile the ordinary camera does not 

have the ability to identify targets through smoke. Therefore, in the future, the model could be trained with human data 

in non-standing postures to enhance the recognition success rate. Besides, the robot's camera could be replaced with an 

infrared thermal one so that it can identify targets behind smoke.  
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Accuracy Face Back Face Back Face Back

Standing 0.9 0.93 0.9 X 0.86 X
Squatting 0.92 0.91 0.91 X X X

Lying 0.81 X X X X X

No smoke Half cover Full cover

[Figure 3: The optimal PID output] 

[Table 1: Smoke test result] 
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Chapter 1   
Introduction 

 Background 
On average, a fire occurs every 23 seconds in the United States. In 2021, U.S. fire 
departments received a total of approximately 135,3500 fire calls, of which 486,500 fires 
occurred indoors, accounting for approximately 36% of the total calls. However, these 
fires resulted in a total of approximately 3,800 deaths, of which 2,880 were from indoor 
fires, a rate of 75.7% [1]. Therefore, when a fire occurs, rescuing trapped people in the 
fastest way will be the key to reducing the mortality rate of indoor fires. However, the 
high temperature, toxic gases and collapsed interior decorations from fires will not only 
hinder the rescue search, but also threaten the safety of rescuers all the time. On the other 
hand, with the development of chip manufacturing technology and the rapid reduction of 
industrial manufacturing costs, automated all-terrain robots, drones and other devices no 
longer exist only in the imagination of science fiction, but are becoming more and more 
common in our lives. Considering the danger of fire scenes, the use of robots instead of 
humans in high-risk scenarios would be a good way to reduce the risks faced by rescuers. 
 
In indoor fire rescue, because of the principle of life first, rescuing trapped people often 
has a higher priority than directly extinguishing the fire. The first step in extricating a 
trapped person is to determine the location of the trapped person. In the past, this was 
usually done based on phone calls, indoor surveillance video, and personal searches by 
rescuers. But there are certain limitations to such approaches. For example, it is difficult 
to cover all areas of a building with surveillance cameras, and the coverage area may be 
obscured by smoke or obstructions. The trapped people inside may lack effective channels 
of communication with the outside world, or they may be unconscious and unable to 
communicate with rescuers. Even if rescuers were to enter the building directly, they 
would be at great risk because they would not know the damage inside the building. If 
robots can be used to search for people, these problems may be solved. 
 
In fact, there have been many robots used in fire rescue. For example, the U.S. Navy has 
developed a humanoid robot called THOR that can traverse the complex terrain on a ship 
and has the ability to open doors and extinguish fires. A robot called Thermite Robot, with 
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tracks and a water pump, was originally developed by the U.S. Army and will be used in 
mountain fire rescue missions in the U.S. Emicontrols has developed a robot called 
TAF20, fitted with a turbine that sprays water, and a bulldozer shovel, primarily for tunnel 
rescue. The turbine not only sprays water, but can also be used as an exhaust fan to clear 
smoke from the tunnel. Lockheed Martin made a robot called Fire Ox with a water tank 
that can tackle initial fires in areas that are out of reach of firemen and fire trucks. [2] 
 
However, the use of these devices requires them to be carried and deployed to the fire by 
firefighters, making it difficult to be put into service immediately of a fire. In addition, 
fires inside buildings may block access to the interior from the outside, so the time to 
deploy the robots into the interior is further prolonged. If these robots were pre-deployed 
indoors as firefighting equipment, when a fire breaks out, the robots could be activated in 
the shortest possible time to automatically search and identify trapped people inside the 
building. This approach would save rescuers a great deal of time and ultimately save more 
lives. However, current indoor search robots are expensive and complex to operate, 
making it difficult to deploy them in advance inside buildings as part of indoor 
firefighting facilities, as is the case with fire hydrants. Therefore, if more inexpensive 
parts robots can be used and such robots are given similar functions as fire rescue robots, 
then the above problems will likely be solved. In addition, cheaper manufacturing costs 
would expand the use of robots, allowing more organizations and individuals who are 
constrained by financial resources to benefit from them. 
 

 Objective 
In this thesis, we built a robot that can automatically patrol inside a building. In the 
process of patrolling, the robot will use the camera to search for the presence of people 
around it. When it recognizes people in the environment, it will automatically take a photo 
of the person and record the specific location coordinates of the person inside the building. 
Then, the picture with the location data will be sent to a computer used by rescue workers. 
After that, rescuers can refer to the location of the picture, knowing where the trapped 
people are. In addition, the robot has the ability of self-charging. It can recognize the 
position of the charging base in the experiment site using the camera and automatically 
complete the docking with the base. When charging is complete, it can continue to patrol 
the building.  
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Chapter 2   
Related Works 

 Previous Studies 

2.1.1. Fire Rescue Robots 
In 2013, the Intelligent Mechanical Systems Engineering Laboratory of Aichi University 
of Technology and the Toyota City Fire Department developed a rescue search robot 
called Scott (Figure 2.1) through a collaboration with the Toyota City Fire Department 
Central Fire Department [3]. Since 2015, six rescue searches of fire scenes have been 
conducted using the robot Experiments. The robot has four angle-adjustable track wheels 
and can climb stairs. At the front of the robot, four cameras for driving were installed, 
three visible light cameras and one infrared camera. There is also a visible light camera 
for recording the situation of disaster site. In addition, the robot is equipped with carbon 
dioxide sensors, thermal imaging cameras, temperature sensors, and combustible gas 
concentration monitoring sensors for sensing environmental hazards. In order to 
communicate with trapped people, the robot also has microphones and speakers. In terms 
of navigation, the robot has a 2D Light Detection And Ranging (LiDAR) model UST-
20LX, so that to generates a map of the environment. In terms of communication, the 
robot is equipped with both wired and wireless network devices, which can adapt to a 
variety of needs. The data of sensing and controlling of the robot is transmitted via the 
network. In 2018, a robot called SmokeBot (Figure 2.2) was developed at Örebro 
University, Sweden [4], which was equipped with 3D LiDAR, cameras, thermal imaging 
cameras, and hazardous gas sensors to work properly in a smoky environment. The 
rescuers can operate the robot from outside of the building, via wireless network, and 
view the image shooting by the robot in real time. With the 3D LiDAR and Simultaneous 
Localization and Mapping (SLAM) algorithm, it can automatically generate a map of the 
building interior and navigating with this map. If it lost the wireless network connection, 
it could return to the nearest communicable location automatically. Around 2007, Hyper 
Soryu IV (Figure 2.3), an indoor search robot with a 3-section body and track wheels, 
controlled by a communication cable equipped with a protective shell and hard joints, 
was jointly proposed by several Japanese universities. The robot has multiple cameras 
mounted on the front and side of the robot for remote operators to better understand the 
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indoor situation. In addition, it is equipped with laser distance sensors, ultrasonic sensors, 
and toxic gas sensors for better monitoring of fire scenes. In addition to track wheels 
indoor search robots, research institutions such as the University of Tokyo and Kobe 
University have proposed rescue search devices based on small airships (Figure 2.4) and 
balloons (Figure 2.5), which haven’t been applied to the real fire rescue works yet. 

 
Figure 2.1 Scott Robot 

 
Figure 2.2 SmokeBot 
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Figure 2.3 Hyper Soryu IV 

 
Figure 2.4 Airship 

2.1.2. Navigation and Obstacle Avoidance Methods of 

Robot Vacuums 
Through a web search, we have investigated 24 common brands of robot vacuums in the 
Chinese market and divided these 24 robots into five sections according to their selling 
prices. Then we have investigated the navigation methods and obstacle avoidance 
methods of each robot, which is summarized in the following table (Table 2.1). 
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Price Mode Navigation Obstacle Avoidance 

1000-2000CNY 

JDJZ Z9 LDS LiDAR IR collision sensor 

MIJIA 2C VSLAM Mechanical collision sensor 

MIJIA 2 dTof LiDAR IR collision sensor 

ECOVACS N8 LDS LiDAR Mechanical collision sensor 

ECOVACS N8 pro LDS LiDAR Structured Light 

360 X95 LDS LiDAR mono camera 

2000-3000CNY 

RockBot T7S Plus dTof LiDAR Structured Light 

360 
XIAOZHANGYU 

dTof LiDAR Mechanical collision sensor 

ECOVACS T9 
Power 

dTof LiDAR Structured Light 

MI 2 Pro LDS LiDAR TOF 

360 X100 MAX dTof LiDAR IR collision sensor 

3000-4000CNY 

ZHUIMI W10 dTof LiDAR Mechanical collision sensor 

YUNJING J1 dTof LiDAR IR collision sensor 

RockBot T7 Pro dTof LiDAR Stereo Camera 

RockBot G10 dTof LiDAR Mechanical collision sensor 

RUIMI EVA dTof LiDAR IR collision sensor 

4000-5000CNY 

ECOVACS T10 
TURBO 

LDS LiDAR Structured Light 

YUNJING J2 dTof LiDAR 
IR + Mechanical  
collision Sensor 

YUNJING J3 dTof LiDAR 
IR + Mechanical  
collision Sensor 

RockBot G10S dTof LiDAR Structured Light+Camera 

ZHUIMI S10 LDS&VSLAM Structured Light 

Above 5000CNY 

ECOVACS X1 
OMNI 

LDS&VSLAM Structured Light 

RockBot G10S pro dTof LiDAR Structured Light+Camera 

ZHUIMI S10 pro LDS&VSLAM Structured Light 

Table 2.1 Navigation and obstacle avoidance methods 
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Figure 2.5 Balloon 

In the navigation technology section, products at the 4,000CNY price level and below 
typically have only one of LiDAR or vision navigation, while more expensive models 
more commonly option for vision + LiDAR fusion navigation. Of all 24 robots, only one 
device used a pure vision-based navigation solution, 20 devices used pure LiDAR-based 
navigation methods, and three devices used LiDAR + vision fusion navigation technology. 
This indicates that LiDAR-based navigation technology is currently the more popular 
choice. 
 
In terms of obstacle avoidance technology, the surveyed devices use methods including 
mechanical contact obstacle avoidance, infrared obstacle avoidance, structured light 
obstacle avoidance, camera obstacle avoidance, and camera and structured light fusion 
obstacle avoidance methods. Among them, infrared obstacle avoidance and structured 
light obstacle avoidance methods are the most common obstacle avoidance solutions. 
Products using these two technologies are available at all price levels. On the contrary, 
camera-based pure visual obstacle avoidance solutions are less common, which may be 
related to the lower accuracy of image recognition. One device uses TOF (Time of Flight) 
obstacle avoidance method, which is similar to laser distance measurement, and measures 
the distance of the target by calculating the time from the launch to the return of the laser. 
In addition, starting from the 4,000CNY price level, some devices use a solution that 
incorporates multiple obstacle avoidance technologies. According to the survey results, 
the advantages and disadvantages of IR and mechanical obstacle avoidance technology 
are comparable, with structured light having a slight advantage. (Table 2.2) For example, 
compared to structured light sensors, IR and mechanical collision sensors can only 
provide two states, collided and not collided, and are not as rich in data as structured light 
sensors. However, the price of these two kinds of sensors is lower, so they are more widely 
used in lower-priced products. On the other hand, as the advantage, structured light 
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sensors are more accurate in detection and provide 3D information about obstacles and 
can complement LiDAR, while they are more expensive and less durable than IR or 
mechanical collision sensors because of a more complex internal structure as the 
disadvantage. Therefore, structured light sensors are more commonly used in expensive 
products. 

  Advantage Disadvantage 

IR collision 
sensor 

Cheap, simple structure, not easily 
damaged 

Not rich in data, only has collided 
and not collided states 

Mechanical 
collision 
sensor 

Cheapest, simple structure, not 
easily damaged 

Not rich in data, only has collided 
and not collided states, not as 
durable as IR collision sensor  

Structured 
Light sensor 

Rich in data, provide 3D information 
about obstacles, can complement 
LiDAR 

Expensive, more complex internal 
structure and not that much 
durable 

Table 2.2 Comparation of sensors 

2.1.3. Self-charging Method 
Currently, self-charging solutions for robots include two categories, contact charging and 
non-contact charging. Among them, contact charging has the longest history of research 
and more studied results. For example, Roufas et al.[5] installed four infrared light-
emitting diodes on the robot and two infrared receivers on the docking base to monitor 
the robot's motion in six degrees of freedom and calculated and transformed these pose 
parameters by least squares, finally achieved the automatic docking function of the robot 
to the base. Minten et al.[6] designed a docking based on the principle of machine vision 
method, as shown in Figure 2.6. This method takes advantage of the property that image 
pixels are linearly related to distance. The distance relationship between the robot and the 
base is determined by counting the percentage of color areas to the whole screen. In 
addition, because two colors are used, the effect of illumination on recognition accuracy 
is reduced. Silverman et al.[7] designed a conical mechanical guidance device (Figure 
2.7) that guides the robot to accurately align with the base when the robot is close to the 
base. Cassinis et al.[8] used two light bulbs to guide the robot (Figure 2.8), and when the 
robot approaching the charging base, a bracket slightly wider than the robot is used to 
limit and adjust the robot's posture to complete the docking. The front of the robot has 
four metal strips that contact with an interface mounted inside the bracket to achieve the 
electrical connection. 
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Figure 2.6 Docking devices by Minten et al. 

 
Compared to contact charging, less research has been done on contactless charging. 
Common non-contact charging technologies include electromagnetic induction type, 
magnetic resonance coupling type and microwave transmission type. Among them, the 
electromagnetic induction charging principle is similar to a transformer without an iron 
core, where a metal coil is connected to the receiving side and the transmitting side 
respectively. When the transmission side outputs alternating current, the receiving side 
would also have voltage based on electromagnetic induction, thus realizing the 
transmission of current. Magnetic resonance coupling charging, on the other hand, makes 
use of the characteristic that the coil has a fixed frequency and amplifies the vibration 
amplitude of the receiving coil through electromagnetic changes, thus achieving energy 
conversion. Microwave transmission, however, takes advantage of the principle that radio 
waves can transmit energy.  
 
In summary, contact and non-contact charging each have advantages and disadvantages. 
(Table 2.3) Contact charging method can support higher charging current while it has a 
simple structure, which not only shortens the charging time and reduced the price cost 
but also suitable for high-power robots. However, as a disadvantage, the contact interfaces 
are directly exposed to the air, and thus are prone to poor contact quality or failure due to 
dust accumulation and oxidation over a long period of time. Meanwhile, the exposed 
contact part in the air also increases the risk of electric shock. Although contactless 
charging can cope with the disadvantage of contact charging method, its higher cost and 
the disadvantage of less efficient charging than contact charging at this stage make the 
research in this area still relatively small. However, with the development of science and 
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Figure 2.7 Docking devices by Silverman et al. 

technology, the power consumption of robots is decreasing on the one hand, and the 
power of non-contact charging has been improved to a great extent on the other hand. All 
these changes make contactless charging seen a broader application prospect in the future. 

 
Figure 2.8 Docking devices by Cassinis et al. 

  Advantage Disadvantage 

Contact charging 
Higher charging current, 
simple structure and cheap 

Contact failure by dust 
accumulation and oxidation, 
risk of electric shock 

Non-contact 
charging 

No poor contact caused by 
dust and oxidation 

Less efficient charging, 
higher price 

Table 2.3 Comparation of charging methods 
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 Affiliated Knowledge 

2.2.1. PID Controls 
PID control is a control method with a feedback mechanism that dynamically controls the 
output according to the feedback effect. The control method consists of three components, 
Proportional, Integral and Derivative, each of which is regulated by the parameters P, I, 
D (Figure 2.9) [9]. These three parameters correspond to the present error, the 
accumulated past error, and the future error, respectively. By setting the above three 
parameters reasonably, the computer can adjust the control amount according to each 
control result and finally achieve a constant output result. Take motor control as an 
example, using PID technology, it can make different motors maintain the same constant 
speed under different loads. It should be noted that due to the influence of manufacturing 
and assembly process, there may be individual differences in the same model of 
equipment, so the PID parameters between them usually cannot be directly followed. 

 
Figure 2.9 PID controller 

2.2.2. Simultaneous Localization and Mapping 
Simultaneous Localization and Mapping or SLAM, was first proposed by R.C. Smith and 
P. Cheeseman et al. in 1986 [10]. It is characterized by the fact that it enables the 
identification of one's own position while mapping the environment. To achieve this goal, 
SLAM techniques usually include several parts such as environment perception, filtering, 
localization, and map construction. Each part in turn includes a variety of possible 
technical routes. The devices currently used for SLAM environment sensing are usually 
of two types: LiDAR and binocular cameras. LiDAR is highly accurate, but expensive. 
Binocular cameras are cheaper, but less accurate than LiDAR and more susceptible to 



12 
 

ambient lighting. In order to improve recognition accuracy, SLAM based on multi-sensor 
fusion such as LiDAR, Camera, and IMU is more common in practical applications. 

2.2.3. Inertial Measurement Unit 
Inertial Measurement Unit or IMU, which is a device that measures the three-axis attitude 
angle or angular rate and acceleration of an object. If we measure the attitude, acceleration 
and angular rate of an object with a certain period, and accumulate these results, we can 
know the direction and moving distance of the object. Therefore, the reasonable use of 
IMU would be working to locate and track the object without relying on other devices. 
Inertial measurement unit is divided into two types: mechanical and electronic. 
Mechanical type is large in size, but is not susceptible to electromagnetic interference, 
and is commonly used in aviation and navigation. Electronic types are similar in 
appearance to ordinary silicon-based chips, small in size and low in energy consumption, 
and are suitable for use in portable devices. 

2.2.4. LiDAR 
LiDAR, or Laser Radar, is a device that uses a laser to scan the environment and map the 
environment based on the characteristic that the laser produces different reflections on 
different shaped objects. There are two categories of LiDAR: 3-D and 2-D. In principle, 
3-D LiDAR is a superposition of several 2-D LiDARs. Therefore, the manufacturing cost 
of 3D LiDAR is much higher than that of 2D LiDAR. In terms of shape, there are solid-
state LiDAR (vertical cavity, or VCSEL) and rotating LiDAR. Solid-state LiDAR is low 
cost and low power consumption, but short scanning range, while rotating LiDAR is 
expensive, but better in use. In terms of ranging principle, it is further divided into two 
categories: triangulation method (or laser direct structuring, LDS) and time-of-flight 
(TOF) method. In the triangulation method, the laser transmitter and CMOS receiver are 
separated by a certain distance, and the laser continuously emits laser light at a certain 
angle. Depending on the distance of the obstacle, the reflected light will fall on different 
positions of CMOS, according to which the light reflection angle can be calculated. Since 
the distance between the emitter and the receiver, as well as the emission angle and 
reflection angle of the light are known, the distance between the LiDAR and the obstacle 
can be calculated using the angle-edge-angle relationship. In the time-of-flight method, 
the laser sends a pulse laser at a certain time interval, and the receiver receives the laser. 
After calculating the time difference between the laser emission and reception, the time 
of laser flight in the air can be obtained, and the distance between the measurement target 
and the LiDAR can be obtained by combining the speed of light. 
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2.2.5. AR-Tags 
AR-Tags are a kind of specially designed QR codes (Figure 2.10), and after attaching the 
tag to a target object, a monocular camera can be used to determine the pose and distance 
of the target object. The principle is that the same tag looks larger when it is close to the 
camera and looks smaller when it is farther away from the camera. When the pose of the 
tag changes, the appearance of the tag in the camera frame will be deformed. Because 
this change is linear, you can use this feature to determine the attitude and distance of the 
tag. It should be noted that the monocular camera itself does not have the ability to 
determine the distance of the target object, so when using AR-Tag, the camera should first 
be calibrated to ensure that the estimated size of the AR-tag image observed by the camera 
is the same as the real size. 

 
Figure 2.10 AR Tags 

2.2.6. Object Detection 
Object detection (Figure 2.11) is a technology based on machine vision as well as image 
processing. This technique can recognize various objects in the input image, such as 
human body, building, vehicle, etc., in real time. Object detection methods are usually of 
two types, non-neural networks and neural networks. Non-neural network methods 
typically use support vector machines (SVMs) to classify objects, while methods using 
neural network concepts are typically based on convolutional neural networks (CNN) 
techniques that allow the algorithm to "automatically" learn to classify target object types 
without defining specific features of the target. Because of the self-improving and 
optimizing nature of algorithms based on neural network technology, it is the mainstream 
technology direction.[11] 
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Chapter 3   
System Design 

 Hardware Selection 
In Chapter 2, we have explained several researches related to firefighting robots and also 
analyzed what types of technologies are used in obstacle avoidance and navigation by the 
mainstream home robot vacuums in the market. Based on the analysis, we found that fire 
rescue robots are very similar to home cleaning robots in terms of navigation and obstacle 
avoidance technologies, for example, in the choice of navigation technologies, most of 
them use LiDAR-based SLAM solutions, while using cameras to assist in observing and 
sensing the environment. In addition, they all use some auxiliary sensors, such as wheel 
speed sensors and inertial gyroscopes, to monitor the robot's running speed and pose. 
Based on the above characteristics, we selected a set of suitable hardwares for this 
experiment, which are mostly from household appliances and personal electronic devices, 
as shown in Table 3.1 in detail. 

 Software Development Environment 
In this system, we used the Arduino 328P that came with the Nexus10006 as the slave 
computer and introduced an ARM computer, the Nvidia Jetson nano, as the master 
computer. For these two devices, we used different software development tools and 
programming languages. For the Arduino part, we used the ArduinoCC IDE software 
provided by the manufacturer, as well as the C programming language required for that 
software. For the Nvidia Jetson nano part, we first installed the Ubuntu 20.04 operating 
system for it. On the Ubuntu operating system, we installed the ROS Noetic software 
library. Using the ROS Noetic library, we developed the robot's various functions in both 
C++ and Python. To facilitate the compilation of the program, we used another PC with 
ubuntu 20.04 and installed the Visual code cross-compiler tool for it. 
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 Hardware and Software Structures 

3.3.1. Hardware Structure 
Figure 3.1 shows the connection relationships of all hardware used in our research. The 
robot body has three wheels, every wheel was driven by a motor, and an encoder was 
used for monitoring the speed of the wheel. These motors and encoders are connected by 
wire to the Arduino. Besides, two voltage sensors, responsible for monitoring the status 
of battery and charging connector respectively, are also connected to the Arduino by wire. 
The jetson nano was the central computer, responsible for data process and main program 
running. To achieve the navigation and target recognizing function, we installed a 
camera, an inertial measurement unit (IMU) and a rotating LiDAR for the robot. These 
devices are connected to the Jetson nano directly by USB cable. To achieve the automatic 
charging function, In terms of self-charging function, in order to avoid the poor contact 
due to contact oxidation, the electromagnetic contactless charging system has been 
introduced. 

Figure 2.1 Object detection 
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Table 3.1 Hardware list 

3.3.2. Software Structure 
Figure 3.2 shows the software structure of the robot. Data related to some basic sensors, 
such as motors and encoders were transferred to the Arduino MCU at first, and then to 
the central computer, Jetson nano. Other sensors which have USB ports, such as camera 
and LiDAR, were connected directly to the central computer, and their data would be 
collected directly by central computer. On the central computer, the Ubuntu 20.04 and 
ROS library has been installed. By using ROS library, we create our function packages. 
Our robot mainly has five function packages, they were responsible for navigation, image 
recognition, sensors driving, robot coordinate transformation and other necessary 
functions respectively.  

Robot body Nexus 10006 3WD Omni wheels with 3 encoders and
an Arduino 328P single chip computer

Mono camera
ELP manual

variable focus
FHD

USB web camera, with FHD CMOS and
2.8-12mm manual variable focus lens

Lidar SLAMTEC
A1M8

LDS type Lidar, 12m range, 360 degree
omnidiractional, 5.5Hz scanning
frequency

IMU HIPNUC
HI229DK

9-axis electronic gyroscope with
magnetometer

Main computer Nvidia Jetson
Nano 4GB

Quad-core ARM A57 CPU@1.43GHz,
4GB LPDDR4 RAM, 128 core maxwell
GPU

DC-DC Adaptor
HOUDEXINI

DC-DC
Adaptor

Input: DC 8-55V Output: DC 1-36V,
15A, 200W

Power charger
Bellnix

BWS50-
28s1R5

Input: AC85V-AC264V@50/60Hz,
Output: DC28.7V, 1.5A

Voltage sensor Keyes Voltage
Sensor

Measuring range: DC 0-25V, compatible
with Arduino

Battery TACKLIFE
P16 150W portable power station, 167Wh
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Robot System
Jetson Nano

(Ubuntu 
20.04)

WIFI
Module

Camera
Module

IMU
Module

Lidar
Module

Arduino
328P

USB

Battery 
Voltage
Sensor

Charging 
Voltage 
Sensor

Motor1

Motor2

Motor3

AB phase
Encoder 1

AB phase
Encoder 1
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Figure 3.2 Hardware structure 
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Figure 3.3 Software structure 
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Chapter 4   
System Implementation 

 Experimental Method 
In our experiments, we used the robot proposed in this paper with a DIY charging base 
and a Linux PC for monitoring the robot's running status. All experiments were conducted 
in the corridor of the 4th floor of the JAIST Knowledge Science Building III and in the 
K45 research room. The experiments included moving function experiment, self-charging 
experiments, SLAM mapping and navigation experiments and object detection 
experiments. 

 Experimental Procedure 

4.2.1. Moving Function Experiment 
In this study, since the ROS software library does not support 3WD robots, we need to 
develop a motor driver program for the 3WD robot. This driver program is divided into 
two parts, the first part is for the Arduino microcontroller that directly controls each motor, 
and the second part is for the Jetson nano that controls the moving direction and speed of 
the robot body. Therefore, the first step is to determine the speed relationship of each 
wheel when the robot is running according to the 3WD robot dynamics equation. The 
formula is shown as below. 
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Where 𝑣𝑣𝐴𝐴 , 𝑣𝑣𝐵𝐵  and 𝑣𝑣𝐶𝐶  are the right wheel, left wheel and rear wheel speeds in the 
forward direction of the robot, respectively. 𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦  and 𝜔𝜔  are the longitudinal 
movement speed, lateral movement speed and rotation speed of the robot body, 
respectively. The specific correspondence is shown in Figure 4.1. 

Using the above theory, we developed driver program for the 3WD robot so that it can be 
used with the ROS software library. In addition, to avoid unstable speed of the wheels 
due to the change of weight and resistance, we introduced a PID algorithm for the control 
of the wheels. Since the motors are not consistent enough and there are more significant 
differences in rotational resistance, we set different PID parameter values for each wheel 
in the code to compensate for this drawback of inconsistent physical characteristics of the 
motor. In this experiment, we used a PID setup with four parameters: the proportional 
parameter P, the integral parameter I, the differential parameter D and the adjustment 
multiplier O. 
 
In the first experiment, we set the integral parameter I, the differential parameter D to 0, 
and the adjustment multiplier O to 50 by default, and only the parameter P was adjusted. 
Because we did not know what the appropriate P was, we randomly chose a value and set 
the parameter P to 20. At this point, the same PID parameters were temporarily set for all 
three motors. We send the control signal of speed 50 to the motors, and the result is shown 
in Figure 4.2. Where the horizontal axis represents the time and the vertical axis 
represents the speed. 

Figure 4.1 3WD robot kinematics 
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Figure 4.2 First experiment of PID 

From Figure 4.2, it can be seen that the speed of the three motors undergoes a long 
oscillation at the beginning, indicating that the value of P is large and should be reduced 
further. Then we try to reduce the value of P by half, set to 10, and other parameters 
remain unchanged. The control command of speed 50 was still send to the motors, and 
the results were obtained as shown in Figure 4.3. 
 
After the P-value is halved to 10, it can be seen that the speed oscillation of the left motor 
(red line) is still very obvious, the right motor (blue line) takes the shortest time to reach 
a stable speed, and the rear motor (green line) has a low-speed phenomenon at the 
beginning. For these phenomena, we believe that the P-value of the left motor is not yet 
optimal, while the low-speed of the rear motor can be compensated by the integral 
parameter I and the differential parameter D. 
Therefore, we further adjust the P-value of the left motor and keep the parameters of the 
right motor and the rear motor unchanged, and the results are shown in Figure 4.4 
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Figure 4.3 Reduce the value of P by half 

 
Figure 4.4 Further reduce the left motor's P-value 

After further adjusting the P-value of the left motor, we can see that the oscillation of the 
left motor disappears, but similar to the case of the rear motor, the left motor also shows 
the phenomenon of low-speed. At this point, we believe that the adjustment of the P-
values for the three motors is almost complete. In the next step, we will adjust the D-
values for each motor in order to alleviate the under-speed phenomenon. We first set the 
same, smaller D value for all three motors, and then send a control signal to the motors 
for speed 50, and the observed results are shown in Figure 4.5. 
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Figure 4.5 First adjustment of D-values for all motors 

From the above graph we observe that although the low-speed of the left motor is solved, 
the constant speed of the motor is much higher than the target value of 50, so we think 
that this is most likely due to the still high P value of the left motor. Therefore, we further 
reduced the P-value of the left motor. In addition, we observed that the speed of the rear 
motor was not stable enough, which may also be due to the interaction between the P and 
D parameters. Therefore, in the next experiments, we tried hundreds of different 
combinations of P-parameters, D-parameters and O-parameters for the three motors, and 
finally found a relatively reasonable combination of parameters, and the running result 
are shown in Figure 4.6. It can be seen that after a short period of deceleration, the three 
motors reach the same speed at almost the same time and the speed remains relatively 
constant in the following time. 
 
It is worth noting that at this time we have only adjusted the P, D, O parameters, and the 
parameter I will produce what effect we have not yet experimented. Therefore, we first 
try to set a value of I for the rear motor, and observe what phenomenon will occur. The 
result is shown in Figure 4.7. 
 
It can be seen that when the integration parameter I is set for the rear motor, there is a 
long-time oscillation and the speed is never constant. Therefore, we believe that for the 
Nexus 10006 robot used in the experiment, only P, D and O parameters are needed. 
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Figure 4.6 An optimal parament set for three motors 

 
Figure 4.7 Set the parameter I for rear motor 

 

4.2.2. 3-D Modeling and Coordinate Transformation Setup 
According to the ROS development documentation, to develop a robot program with the 
ROS software library, it is necessary to set a uniform coordinate transformation 
relationship for all sensors installed on the robot, so that the data collected by all sensors 
will have the same reference point, or origin point. This is because the camera, odometer, 
gyroscope, and other devices are installed at different locations on the robot and have 
position deviations from each other, which will cause the collected data to have their 
respective locations as the origin. Therefore, these data cannot be directly used for the 
robot's navigation without coordination transformation. 
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To solve this problem, we built a three-dimensional coordinate transformation model for 
the robot and calibrated the positions of the sensors in the model according to the real 
dimensions and relative positions of the robot and the sensors. Using this model, together 
with the relevant functions of the ROS library, we can unify the data origin of all sensors 
with the position reference point of the robot. Figure 4.8 shows the comparison between 
the physical photograph of the robot and the model. 

 
Figure 4.8 The real robot and the 3D model 

To simplify the development, we use a large cylinder to represent the main structure of 
the robot and a small cylinder to represent the LIDAR mount. In the 3D model, the black 
rectangle located in front of the large cylinder is the camera, and the black rectangle at 
the bottom of the small cylinder is the IMU. The black pie-shaped structure at the top of 
the small cylinder is the LiDAR. Based on this model, we calibrated the position 
relationships for the three wheels, various sensors and the body structure of the robot. The 
results are shown in Figure 4.9. 

 
Figure 4.9 Coordinate transformation setup 
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Using this robot model, we unified the data of the robot body, each sensor, the odometer 
map and the navigation map, and the coordinate transformation tree has been setup. When 
the program running, the coordinate transformation of the data flow in the ROS software 
library is shown in Figure 4.10. Where Map is the coordinates of the global map generated 
by LiDAR and the odometer (odom) is the coordinates of the robot's positional data 
calculated with the wheel speed sensor as well as the IMU. From base_footprint 
downward, we can see that the data from the three wheels, the LiDAR, the IMU, and the 
camera are converted to base_link, which represents the center of gravity of the robot 
body, and also be seen as the reference point. The base_footprint is the projection of the 
robot's center of gravity on the ground, which coincides with the initial origin of the map 
and odometer coordinate systems. By using this coordinate transformation relationship, 
the data from each sensor of the robot can be used for detecting the posture and ranging, 
eventually for SLAM navigation, automatic docking and charging, and target recognition. 

 
Figure 4.10 Coordinate transformation tree 

It is worth mentioning that the ROS software library is not the same as the usual class-
and-instance-based software library. In the ROS software library, to facilitate distributed 
computing, the passing of data does not rely on variables and values, but uses a medium 
called topics. The graphical tool that comes with ROS allows us to view the flow of data 
from various sensors while the robot is running, which was shown as Figure 4.11. 
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Figure 4.11 Data flow 

4.2.3. SLAM Mapping and Navigation 
Using LiDAR, wheel speed sensors and IMU, we can use the SLAM function of the ROS 
software library for map generation and navigation. It is important to note that the 
standard ROS software library usually only needs to obtain the pose and speed 
information from the wheel speed sensor and does not need to use the IMU sensor. 
However, in this study, we found that when the wheels skid, this kind of positional sensing 
method can present a large amount of erroneous data, which causes the robot to lose its 
direction while driving. Therefore, we introduced a fusion method of IMU and wheel 
speed sensors. Based on the sensor fusion method, we used LiDAR to build a map for the 
experimental site, as shown in Figure 4.12. In which, the LiDAR-generated map is shown 
on the left and the real map of the experimental environment is shown on the right. 
Obviously, the LiDAR-generated image is very close to the real situation. 

 
Figure 4.12 LiDAR map and real map 
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Using this map, we experimented with the autonomous navigation function of the robot. 
It should be noted that because of the weak processor performance of JetsonNano, the 
default transform_torlerance parameter does not allow the program to obtain valid 
coordinate transformation data within the specified time, so it is necessary to increase this 
parameter. For the costmap-related parameters, we set the inflation_radius parameter for 
the robot to avoid getting stuck at special locations such as walls and corners. More 
specifically, we set the global inflation_radius to be larger and the local inflation_radius 
to be smaller. In the path planning algorithm, we choose the Dijkstra algorithm for global 
path planning, which is a kind of shortest path search algorithm based on generalized 
traversal search, and can find the shortest path in the ideal state better. In the local path 
planning part, we use the DWA algorithm (dynamic window approach), which simulates 
different motion trajectories in space using multiple speeds and selects the optimal 
trajectory to drive the robot through the evaluation function. This function has a low 
computational complexity, requires less performance from the main computer, and has 
the property of real-time computation for obstacle avoidance. In addition, in our 
experiments, we found that because the LiDAR is located on the top of the robot and the 
rotation of the LiDAR generates vibration, which leads to a large ranging error when the 
robot is close to an obstacle such as a wall and cannot pass through the obstacle-free 
passage. To solve this problem, we improved the behaves when robot encountering 
obstacles, allowing it to “try to squeeze” through narrow spaces at a lower speed. Fig. 4-
13 to Fig. 4-15 show how the robot automatically navigates to the target location. 

 
Figure 4.13 Create the global path 
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Figure 4.14 Obstacle avoidance and turning 

 
Figure 4.15 Approaching the destination 

4.2.4. AR-Tag Based Self-charging Experiment 
In our proposal for automatic docking charging, we use AR-Tag based on machine vision 
to locate the position and pose of the charging base. This is a method that uses a 
monocular camera to identify the distance as well as the pose of the tag using the size and 
the degree of deformation of the AR-Tag tag in the frame. Therefore, the camera needs to 
be calibrated before use. In this thesis, we used the camera_callibration program provided 
by the ROS library and a calibration plate with 7x9 black and white grids to calibrate the 
robot’s camera. The calibration screen is shown in Figure 4.16. The camera calibration is 
done when the grid is moved horizontally, vertically and diagonally so that the progress 
bars under X, Y, Size and Skew are full. 
 
After that, in order to achieve the automatic docking and charging function between robot 
and the base, we made an docking base in cardboard equipped with a electromagnetic 
contactless charging device. This charging module can provide a maximum charging 
power of 43W. The module mainly has two parts: the power supply side and the receiving 
side, where the power supply side is placed in the center of the charging base arm, and 
the receiving side is installed at the lower position directly in front of the robot, as shown 
in Figure 4.17 and Figure 4.18. 
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Figure 4.16 Camera callibration 

 
Figure 4.17 Contactless charging module on robot and charging base 
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Figure 4.18 Docking demonstration 

Using this docking device, we tested the robot's recognition of the pose and position of 
the charging base. We first placed the base with the AR-Tag in front of the robot camera 
and observed the robot's recognition of the AR-Tag. The results are shown in Figure 4.19. 

 
Figure 4.19 Tag recognition test result 1 

As can be seen in the screenshot, in the camera screen on the left, the robot has shown 
the location of the tag in the screen with a green box, and the blue text in the green box 
shows the specific information about the tag. The distance and relative position of the 
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robot to the AR-Tag can also be seen in the 3D model of the robot in the right part of the 
screenshot, and this relative position is the same with what is shown in the left camera 
screen. 
 
After that, we move the robot towards the other direction, but keep the tag still within the 
camera's view, and the result is shown in Figure 4.20. As can be seen, in the camera image 
on the left side of the screenshot, the robot is facing out of the window and the AR label 
is located on the left side of the robot. In the 3D model of the robot on the right side of 
the screenshot, the AR label is also located on the left side of the robot. This indicates that 
the robot's recognition of the label position pose is accurate. 

 
Figure 4.20 Tag recognition test result 2 

Based on the above tests, we made a docking test. The experiment video record are shown 
as Figure 4.21 and Figure 4.22. 

 
Figure 4.21 In docking progress 
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Figure 4.22 Docking finished 

4.2.5. Object Detection Experiment 
In this proposal, searching for trapped people in buildings and recording the location for 
the rescuers outside the building is a very important function. Therefore, for this function, 
we use a object detection model based on machine learning for identifying trapped people. 
For the robot developed based on the ROS library, the YOLO series object detection 
algorithm has many advantages such as high integration, perfect documentation, and low 
resource consumption, so we chose the YOLO version 5 [12], which was the mainstream 
in the ROS library at that time. Then, we used the automatic navigation function 
introduced in 4.2.2 to allow the robot to move autonomously in the experimental site, and 
enabled the object detection function. If an object marked as Person is recognized in the 
screen with an accuracy rate of 0.8 or higher, the recognition image will be automatically 
saved and the current location of the robot in the map will be recorded. Figure 4.23 shows 
a screenshot of the robot in running. At the bottom left of the screenshot, the object 
detection algorithm has detected the human object and its accuracy rate is 0.93. Since 
0.93 is greater than 0.8, the screenshot is saved and the robot performed the correct 
operation as shown in Figure 4.24. The stored image is shown in Figure 4.25, and its file 
name is pic_-7.5_-19.8_raw. 
 
During the autonomous moving of the robot, multiple identified objects may be 
encountered, so all the saved images are uploaded in real time to a folder on a remote 
server for use. All the recognition results in this folder are shown in Figure 4.26. 
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Figure 4.23 Object detection while autonomous moving 

 
Figure 4.24 Correctly operation 

Finally, considering smoke often presented in indoor fire scenes, which’s may also be an 
important influence on the robot's recognition performance, we tested how smoke would 
affect the camera and the object detection algorithm by creating smoke with dry ice. In 
our test, we set three levels of smoke concentration, i.e., no smoke, half smoke, and full 
smoke states. Also, three poses were set for the test, and each pose was divided into face 
towards camera (face side) and back towards camera (back side). The object detection 
algorithm was then applied to see what would happen. Due to the limitations of the test 
site, the test was conducted in several rounds, and the screenshots shown in Figure 4.27 
are the results of the last test. The sequence of experiments was from no smoke to full 
smoke, and from standing to lying postures. 
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Figure 4.25 Saved picture 

 
Figure 4.26 Object detection results 

NO SMOKE HALF SMOKE FULL SMOKE

FACE SIDE FACE SIDE FACE SIDEBACK SIDE BACK SIDE BACK SIDE

STAND-
ING

SQUATTING

LYING

 
Figure 4.27 Smoke test 

In our test, if a pose was not recognizable at lower levels of smoke, subsequent 
experiments were terminated. For example, if the half-smoke, standing posture, back-to-
camera scenario failed, then the subsequent full-smoke, standing posture, back-to-camera 
scenario was not tested. In scenes where recognition fails, there is no red recognition box 
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in the screenshot. Scenes that were not experimented with are marked with a red circle. 

 No smoke Half cover Full cover 

Accuracy Face Back Face Back Face Back 

Standing 0.9 0.93 0.9 X 0.86 X 

Squatting 0.92 0.91 0.91 X X X 

Lying 0.81 X X X X X 

Table 4.1 Smoke test 

Test result based on Figure 4.27 and Table 4.1, Yolo_v5 has a higher recognition accurate 
for standing posture and a lower recognition accurate for squatting and lying posture. 
Meanwhile, the recognition accurate was higher on the face side (even when the person’s 
face was not exposed) and lower on the back side. In addition, the concentration of smoke, 
to the extent of the human body coverage will also affect the accuracy of recognition. 
However, in the process of the experiment, it was found that even if the smoke covered 
the whole surface of the human body, if the concentration of the smoke was not thick 
enough and the outline of the human body could be seen, then the human body could still 
be recognized. The phenomenon was most pronounced when the person faced the camera. 
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Chapter 5   
Summary and Improvement 

In this thesis, we present a robotic implementation for searching trapped persons in 
indoor fires. Unlike conventional firefighting equipment, our robots use inexpensive parts 
commonly found in various household appliances, reducing costs and thus can be 
deployed inside buildings as part of a fixed firefighting facility before a fire occurs. As a 
result, these robots can be put to use more quickly when a fire breaks out, rather than 
having to wait to be deployed from distant locations, thus saving rescue time. In addition, 
this inexpensive robot design can be used in under developing areas where the cost of 
professional rescue robots is limited by the economic level. 

 
For the robot proposed in this paper, we conducted experiments on PID parameter 

tuning, SLAM map building and navigation, AR-Tag-based self-charging, and YOLO 
machine-learning algorithm-based object detection. To perform the above experiments, 
we used the ROS software library as the running framework for the robot, and based on 
this, we developed software packages to achieve various functions. In addition, because 
the robot is equipped with multiple sensors, we designed a 3D model for the robot in 
order to allow these sensors to work with each other, and by calibrating the relative 
positions of each sensor in this model and setting up a coordinate transformation tree, we 
unified the data origin of each sensor on the robot backbone base_link. Finally, although 
the robot itself is equipped with an Arduino 328P microcontroller, its performance is not 
sufficient to run the various functions required in this proposal. Therefore, we installed 
an ARM architecture PC, Nvidia Jetson Nano, to it, and implemented the control system 
of the robot by using this PC as the host and the Arduino as the slave. 
 
As the more novel part of this paper, the main points are as follows. First, the ROS 
software library is designed for 2-wheel differential robots and cannot be used for the 
3WD robots in this paper. Therefore, we developed a motor driver for the ROS software 
library based on the kinematic formulation of the 3WD robot. Also, to address the 
problem that the use of cheap parts leads to poor consistency of the motors and the use of 
the same set of PID control parameters does not achieve optimal results, we set PID 
parameters for each set of motors separately when developing the driver, thus achieving 
a better control effect. In addition, unlike common drivers, the robot used in this paper 
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has both a JetsonNano host and an Arduino slave, so the drivers we developed are divided 
into host and slave, and the development languages include C, C++ and Python. 
 
Secondly, we propose a new docking method for the automatic charging of robots. This 
method uses the concept of machine vision, using a monocular camera and an AR-Tag, 
to achieve recognition and pose confirmation of the automatic charging base. 
Subsequently, we use a 3D robot model with coordinate transformation function to unify 
the coordinate positions of the AR-Tag and the robot itself, so that the robot can clearly 
know the position and angle of the charging base, and finally this information allows the 
robot to achieve automatic docking with the charging base. On the other hand, for the 
power supply method, we chose the electromagnetic contactless charging module which 
is less common at present. The wireless charging module does not have an exposed metal 
contact surface, which not only avoids the risk of leakage, but also solves the problem of 
poor contact due to oxidation of the metal when exposed to air for a long time. This 
oxidation resistance is ideal for robots such as those used in this paper that require long-
term deployment. 
 
Finally, we introduced the YOLO version 5, a target recognition model based on machine 
learning principles, for detecting human bodies in the environment. Through smoke 
experiments, we found that the model works best for recognition of experimental targets 
in a smoke-free environment and in a standing position, but not well for experimental 
targets in a lying position. When smoke is present in the environment, the recognition 
success rate of the model decreases significantly. We speculate that, on the one hand, it is 
difficult for the ordinary camera we use to penetrate the smoke. On the other hand, the 
YOLO model may rarely use human data in lying posture for training. 
 
Therefore, as the part that still needs to be improved, we think there are two points as 
follows. First, we use a 3WD chassis as the walking part of the robot, but this structure 
has a low ability to cross obstacles, and our robot may encounter difficulties when a fire 
occurs and the interior decoration material collapses causing obstacles in the path. 
Therefore, if this chassis can be replaced with a chassis that has a stronger ability to cross 
obstacles, such as a full-tracked chassis, 8X8 wheeled off-road chassis, then perhaps the 
situation will be greatly improved. 
 
In addition, in the smoke experiment, we found that this proposal has a low recognition 
success rate for experimental scenes with smoke, non-standing posture, which is partly 
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due to the fact that the camera we used does not have the ability to penetrate smoke, and 
partly may be due to the lack of training of the YOLO version 5 model for non-standing 
human targets. If a thermal imaging camera that can penetrate smoke is used instead of a 
normal camera, and the model is trained using a dataset enhanced with non-standing 
human subjects, the results of the smoke experiments may be greatly improved. 
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